

Case Study

Insurance and Risk Management

 1

Automated Insurance Analytics

Client: Anonymous

Business Size: Corporation

Industry: Insurance and Risk Management

Country: UK

Technology: C#, ASP.Net Core 6, Blazor, Bootstrap

Objective: Create an Automated Insurance Analytics System

The Brief

The project is an automated insurance analytics system for a major

UK reinsurance broker. While this is composed of a suite of semi-

independent subsystems, all are needed to meet the overall

objectives.

Background

The client is a long-standing international insurance broker that has

also become prominent in risk management, and HR & benefits.

There are many vendors who model catastrophes for reinsurance

purposes. A catastrophe event (earthquake, fire, flood, landslide, etc.)

applies to a geographical location, the building, and the insurance

cover of the building. The system models the financial cost of

potential claims for such disasters across the world.

Each vendor has their own catastrophe modelling engines and

produces their own data, reports, and analytics. The main objective is

to compare different vendors’ catastrophe models against each other

to identify where there may be savings.

In the absence of a standard data format for this information, the client

has to import the data from each vendor, transform it to their standard

format, and then transform it again to the format of the vendor

catastrophe model they want to compare it with, while producing

reports and analytics. There are many vendors with different data

formats and the size of the data is in petabytes.

Case Study

Insurance and Risk Management

 2

The main subsystems are:

• Job Manager – Deals with all the SQL Server jobs that are

executed automatically or manually depending on the

environment.

• Client Manager – Manages all the clients that are associated

with a project, including obtaining data from a source vendor,

and transforming and exporting the data to a target vendor’s

catastrophe modelling engine.

• User Manager – Manages the users of the system i.e.

developers, catastrophe modellers, and actuarial professionals.

• Project Manager – Manages the project input submissions,

project data, trans-formations, export submissions, analytics,

and reports.

Methodology

To develop and enhance the front-end UI using Blazor server-side

web pages and components, both Bootstrap and Blazorise

component libraries were needed. These allowed for the look and feel

of the UI, and the standard set by the team regarding UI development

to be followed. The UI had to be adapted to a tablet format as the

amount of data that needed to be displayed meant that a typical

mobile first design approach was not suitable.

The project was an ASP.Net Core Blazor server-side web application,

utilising classes and APIs for CRUD operations, and ADO.Net

framework to communicate with the SQL Server database. The

innovative part of this project was the creation of the bespoke Data

Access layer project and its classes. This was partly due to the

requirement that everything developed should not be a black-box and

when debugging/maintenance is required, necessary skills are

available. The amount of data in this system is in petabytes and

control and understanding of the code was paramount.

There were weekly stand-up meetings with a log of the tasks and sub-

tasks with estimates of the time expected to complete the tasks. The

client’s re-insurance department was heavily involved as they held the

relevant business knowledge. During these meetings we would

discuss our progress and any issues. We would also change priorities

Case Study

Insurance and Risk Management

 3

accordingly if there were any unexpected delays, which could be the

result of testing and fixing or modifying components of the

development work. High coding standards were maintained in part

with regular code-reviews, and our consultants being allowed a

significant degree of ownership of some crucial tasks.

We used C# developed using Visual Studio 2022. The web application

was developed using as ASP.Net Core 6.0 Blazor server-side

application. For the styling of the UI we used Blazorise and Bootstrap

component libraries. We deliberately began with the default settings

for all these UI components where possible as we didn’t want to start

changing things without user feedback. Azure DevOps was used to

maintain our code versions, using development branches and

merging when necessary, with Azure Continuous

Integration/Continuous Deployment to push the changes into the

staging environment for the catastrophe modellers to do their testing.

Challenges

The client engaged OCS Consulting to develop specific functionalities

that were planned to be released to a demanding timescale. In

addition to the enhancements to the core system, existing in-house

tools needed to be further developed, enhanced, or upgraded to help

with the setup of lookup data, SQL Scripts, and code generation that

are important for efficient operation.

Due to the complexity of the project the team had two of its own

developers as well as two developers from OCS Consulting and the

outstanding work was split so that the deadline could be met.

The tasks we were given were complex. We had to use existing code

representing the tables and lookup data instead of writing our own

back-end code for CRUD operations. We needed to understand each

of these before starting any coding. With limited assistance available

from the client, we examined the code from previous example test

pages to get a good idea of the tasks involved. We were expected to

investigate as much as possible and then discuss our strategy for

resolving the task at hand. It was important to gain business

knowledge to ask the right questions when we needed assistance.

Case Study

Insurance and Risk Management

 4

Initially it was hard to navigate through the many projects as there

were multiple layers to negotiate. Over time we became familiar with

each one and understood the code changes required.

In the face of these challenges, our consultant was able to adapt and

develop the skills necessary to successfully complete their tasks and

contribute to the successful delivery of the project.

Consultant Contribution

As a full stack ASP.Net Core web developer, while our consultant’s

main role was to develop the Data Format and Transformation

functionalities, additional requirements included modifications to two

application tools. Previous experience on ASP.Net Core MVC

applications made the dependency injection concept easy to

understand.

Our consultant created Blazor web pages and components and the

code-behind files for each function. Also, because this is a multi-tiered

architecture, enhancements were needed to the business and data

layer classes. For the database, while no new tables were required,

SQL Scripts and stored procedures were created. This was done for:

• DataFormat, describing each data format file, and breaking

down the content of each to details such as the name of the file,

its location, and what each column of the file is and its data type.

This function also includes a component that lists sample files

and the functionality to download any of these sample file.

• Transformation, a complex module with multiple sections,

including a project header section that breaks down the

project’s meta data, and a section for listing the Transformation

jobs currently running and those already complete. The new

Transformation page had several sections again with the project

meta data detail, and a list of portfolios (a portfolio as a filtered

list of imported submissions from the source vendor). Other

sections were used to identify the target transformation and

identify the geographical location, the building, and the

insurance cost of the building. This was a complex task and a lot

Case Study

Insurance and Risk Management

 5

of testing was required to ensure all relevant data was correctly

populated.

The Code Generator project (a WinForm project) is a tool to build

POCO classes representing any new or updated entity in the SQL

Server database. This needed to be rebuilt with DOT.Net 6.0 and

upgraded with the latest Nuget Packages, and thoroughly tested

before deploying.

The Dev Centre project (a Blazor web project) required creation of a

UI and the code-behind classes to obtain the text and related

parameters of complex SQL queries stored in database tables in

multiple environments. These records were compared to establish if

there were any changes using hashbyte functionality for checking the

text and simple comparisons for the parameter fields. Once identified,

users have the choice to migrate the new or updated versions from

the Development environment to the staging environment. ADO.Net

Datasets, DataTables and DataAdaptors were used for this operation.

Lessons learned

When working on large enterprise applications, it is important not to

get overwhelmed. Understanding the business and systems at a high-

level can be very beneficial when working on low-level coding and

design tasks. Striking a balance between spending time with busy

client staff and investigating on your own is important. When

investigating how tools work it is also important to study local code to

learn the patterns in use at the client, as there are frequently multiple

ways to achieve the same result. It is good to get as much exposure

as possible before starting any kind of development work.

